Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 255
Filtrar
1.
Res Sq ; 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38645088

RESUMO

Imaging reporter genes are indispensable for visualising biological processes in living subjects, particularly in cancer research where they have been used to observe tumour development, cancer cell dissemination, and treatment response. Engineering reporter genes into the germline frequently involves single imaging modality reporters operating over limited spatial scales. To address these limitations, we developed an inducible triple-reporter mouse model (Rosa26LSL - NRL) that integrates reporters for complementary imaging modalities, flfluorescence, bioluminescence and positron emission tomography (PET), along with inducible Cre-lox functionality for precise spatiotemporal control of reporter expression. We demonstrated robust reporter inducibility across various tissues in the Rosa26LSL - NRL mouse, facilitating effective tracking and characterisation of tumours in liver and lung cancer mouse models. We precisely pinpointed tumour location using multimodal whole-body imaging which guided in situ lung microscopy to visualise cell-cell interactions within the tumour microenvironment. The triple-reporter system establishes a robust new platform technology for multi-scale investigation of biological processes within whole animals, enabling tissue-specific and sensitive cell tracking, spanning from the whole-body to cellular scales.

2.
Lancet Neurol ; 23(5): 500-510, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38631766

RESUMO

BACKGROUND: In people with genetic forms of Alzheimer's disease, such as in Down syndrome and autosomal-dominant Alzheimer's disease, pathological changes specific to Alzheimer's disease (ie, accumulation of amyloid and tau) occur in the brain at a young age, when comorbidities related to ageing are not present. Studies including these cohorts could, therefore, improve our understanding of the early pathogenesis of Alzheimer's disease and be useful when designing preventive interventions targeted at disease pathology or when planning clinical trials. We compared the magnitude, spatial extent, and temporal ordering of tau spread in people with Down syndrome and autosomal-dominant Alzheimer's disease. METHODS: In this cross-sectional observational study, we included participants (aged ≥25 years) from two cohort studies. First, we collected data from the Dominantly Inherited Alzheimer's Network studies (DIAN-OBS and DIAN-TU), which include carriers of autosomal-dominant Alzheimer's disease genetic mutations and non-carrier familial controls recruited in Australia, Europe, and the USA between 2008 and 2022. Second, we collected data from the Alzheimer Biomarkers Consortium-Down Syndrome study, which includes people with Down syndrome and sibling controls recruited from the UK and USA between 2015 and 2021. Controls from the two studies were combined into a single group of familial controls. All participants had completed structural MRI and tau PET (18F-flortaucipir) imaging. We applied Gaussian mixture modelling to identify regions of high tau PET burden and regions with the earliest changes in tau binding for each cohort separately. We estimated regional tau PET burden as a function of cortical amyloid burden for both cohorts. Finally, we compared the temporal pattern of tau PET burden relative to that of amyloid. FINDINGS: We included 137 people with Down syndrome (mean age 38·5 years [SD 8·2], 74 [54%] male, and 63 [46%] female), 49 individuals with autosomal-dominant Alzheimer's disease (mean age 43·9 years [11·2], 22 [45%] male, and 27 [55%] female), and 85 familial controls, pooled from across both studies (mean age 41·5 years [12·1], 28 [33%] male, and 57 [67%] female), who satisfied the PET quality-control procedure for tau-PET imaging processing. 134 (98%) people with Down syndrome, 44 (90%) with autosomal-dominant Alzheimer's disease, and 77 (91%) controls also completed an amyloid PET scan within 3 years of tau PET imaging. Spatially, tau PET burden was observed most frequently in subcortical and medial temporal regions in people with Down syndrome, and within the medial temporal lobe in people with autosomal-dominant Alzheimer's disease. Across the brain, people with Down syndrome had greater concentrations of tau for a given level of amyloid compared with people with autosomal-dominant Alzheimer's disease. Temporally, increases in tau were more strongly associated with increases in amyloid for people with Down syndrome compared with autosomal-dominant Alzheimer's disease. INTERPRETATION: Although the general progression of amyloid followed by tau is similar for people Down syndrome and people with autosomal-dominant Alzheimer's disease, we found subtle differences in the spatial distribution, timing, and magnitude of the tau burden between these two cohorts. These differences might have important implications; differences in the temporal pattern of tau accumulation might influence the timing of drug administration in clinical trials, whereas differences in the spatial pattern and magnitude of tau burden might affect disease progression. FUNDING: None.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Síndrome de Down , Masculino , Feminino , Humanos , Adulto , Doença de Alzheimer/genética , Estudos Transversais , Peptídeos beta-Amiloides/metabolismo , Proteínas tau/metabolismo , Amiloide , Imageamento por Ressonância Magnética/métodos , Tomografia por Emissão de Pósitrons/métodos , Disfunção Cognitiva/patologia
3.
Acta Neuropathol ; 147(1): 20, 2024 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-38244079

RESUMO

The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset > 75 years. All offspring were affected with AD with ages at onset ranging from 53 years to 74 years. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.


Assuntos
Doença de Alzheimer , Humanos , Idoso , Doença de Alzheimer/genética , Frequência do Gene , Predisposição Genética para Doença , Proteínas de Membrana Transportadoras/genética , Mutação de Sentido Incorreto , Proteínas Relacionadas a Receptor de LDL/genética , Polimorfismo de Nucleotídeo Único
4.
Brain ; 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38226698

RESUMO

Loss-of-function variants in the triggering receptor expressed on myeloid cells 2 (TREM2) are responsible for a spectrum of neurodegenerative disorders. In the homozygous state, they cause severe pathologies with early onset dementia, such as Nasu-Hakola disease (NHD) and behavioral variants of frontotemporal dementia (FTD), whereas heterozygous variants increase the risk of late-onset Alzheimer's disease (AD) and FTD. For over half of TREM2 variants found in families with recessive early onset dementia, the defect occurs at the transcript level via premature termination codons or aberrant splicing. The remaining variants are missense alterations thought to affect the protein; however, the underlying pathogenic mechanism is less clear. In this work, we tested whether these disease-associated TREM2 variants contribute to the pathology via altered splicing. Variants scored by SpliceAI algorithm were tested by a full-size TREM2 splicing reporter assay in different cell lines. The effect of variants was quantified by qRT-/RT-PCR and western blots. Nanostring nCounter was used to measure TREM2 RNA in the brains of NHD patients who carried spliceogenic variants. Exon skipping events were analyzed from brain RNA-Seq datasets available through the Accelerating Medicines Partnership for Alzheimer's Disease Consortium (AMP-AD). We found that for some NHD and early onset FTD-causing variants, splicing defects were the primary cause (D134G) or likely contributor to pathogenicity (V126G and K186N). Similar but milder effects on splicing of exons 2 and 3 were demonstrated for A130V, L133L and R136W enriched in patients with dementia. Moreover, the two most frequent missense variants associated with AD/FTD risk in European and African ancestries (R62H, 1% in Caucasians, and T96K, 12% in Africans) had splicing defects via excessive skipping of exon 2 and overproduction of a potentially antagonistic TREM2 protein isoform. The effect of R62H on exon 2 skipping was confirmed in three independent brain RNA-seq datasets. Our findings revealed an unanticipated complexity of pathogenic variation in TREM2, in which effects on post-transcriptional gene regulation and protein function often coexist. This necessitates the inclusion of computational and experimental analyses of splicing and mRNA processing for a better understanding of genetic variation in disease.

5.
Cell ; 186(26): 5766-5783.e25, 2023 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-38134874

RESUMO

The enhanced cognitive abilities characterizing the human species result from specialized features of neurons and circuits. Here, we report that the hominid-specific gene LRRC37B encodes a receptor expressed in human cortical pyramidal neurons (CPNs) and selectively localized to the axon initial segment (AIS), the subcellular compartment triggering action potentials. Ectopic expression of LRRC37B in mouse CPNs in vivo leads to reduced intrinsic excitability, a distinctive feature of some classes of human CPNs. Molecularly, LRRC37B binds to the secreted ligand FGF13A and to the voltage-gated sodium channel (Nav) ß-subunit SCN1B. LRRC37B concentrates inhibitory effects of FGF13A on Nav channel function, thereby reducing excitability, specifically at the AIS level. Electrophysiological recordings in adult human cortical slices reveal lower neuronal excitability in human CPNs expressing LRRC37B. LRRC37B thus acts as a species-specific modifier of human neuron excitability, linking human genome and cell evolution, with important implications for human brain function and diseases.


Assuntos
Neurônios , Células Piramidais , Canais de Sódio Disparados por Voltagem , Animais , Humanos , Camundongos , Potenciais de Ação/fisiologia , Axônios/metabolismo , Neurônios/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canais de Sódio Disparados por Voltagem/metabolismo
6.
Am J Med Qual ; 38(5): 218-228, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37656607

RESUMO

Although lung cancer claims more lives than any other cancer in the United States, screening is severely underutilized, with <6% of eligible patients screened nationally in 2021 versus 76% for breast cancer and 67% for colorectal cancer. This article describes an effort to identify key reasons for the underutilization of lung cancer screening in a rural population and to develop interventions to address these barriers suitable for both a large health system and local community clinics. Data were generated from 26 stakeholder interviews (clinicians, clinical staff, and eligible patients), a review of key systems (Electronic Health Record and billing records), and feedback on the feasibility of several potential interventions by health care system staff. These data informed a human-centered design approach to identify possible interventions within a complex health care system by exposing gaps in care processes and electronic health record platforms that can lead patients to be overlooked for potentially life-saving screening. Deployed interventions included communication efforts focused on (1) increasing patient awareness, (2) improving physician patient identification, and (3) supporting patient management. Preliminary outcomes are discussed.


Assuntos
Detecção Precoce de Câncer , Neoplasias Pulmonares , Humanos , Estados Unidos , População Rural , Neoplasias Pulmonares/diagnóstico , Pacientes , Análise de Sistemas
7.
J Neurol Sci ; 452: 120763, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37598468

RESUMO

BACKGROUND: NOTCH3 is the causative gene for autosomal dominant cerebral arteriopathy with subcortical infarctions and leukoencephalopathy (CADASIL) which is associated with both stroke and dementia. When CADASIL presents primarily as dementia it can be difficult to distinguish from Alzheimer's disease (AD) at both the clinical and neuropathological levels. METHODS: We performed exome sequencing of several affected individuals from a large family affected with AD. PCR amplification and direct Sanger sequencing were used to verify variants detected by exome analysis and to screen family members at-risk to carry those variants. Neuropathologic brain evaluation by immunohistochemistry and MRI were performed for the carriers of the NOTCH3 variant. RESULTS: In a three-generation family with AD, we found a c.601 T > C p.Cys201Arg variant in the NOTCH3 gene that caused clinical and neuropathological manifestations of CADASIL. These features included earlier onset of dementia accompanied by behavioral abnormalities in the father and son and white matter abnormalities in the asymptomatic grandson. The family is one branch of a large pedigree studied by the Alzheimer's Disease Sequencing Project (ADSP). As part of the ADSP linkage analysis and whole genome sequencing endeavor, an ABCA1 variant, p.Ala937Val, was previously found associated with AD in this pedigree. CONCLUSIONS: Our findings, together with other reported pathogenic missense variants of the C201 codon in NOTCH3, support the role of cysteine 201 as a mutation hotspot for CADASIL and highlight the genetic complexity both clinically and pathologically of AD and related dementia.


Assuntos
Doença de Alzheimer , CADASIL , Demência Vascular , Leucoencefalopatias , Humanos , Doença de Alzheimer/complicações , Doença de Alzheimer/diagnóstico por imagem , Doença de Alzheimer/genética , CADASIL/complicações , CADASIL/diagnóstico por imagem , CADASIL/genética , Infarto Cerebral , Receptor Notch3/genética
8.
bioRxiv ; 2023 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-37461597

RESUMO

The SORL1 gene has recently emerged as a strong Alzheimer's Disease (AD) risk gene. Over 500 different variants have been identified in the gene and the contribution of individual variants to AD development and progression is still largely unknown. Here, we describe a family consisting of 2 parents and 5 offspring. Both parents were affected with dementia and one had confirmed AD pathology with an age of onset >75 years. All offspring were affected with AD with ages at onset ranging from 53yrs-74yrs. DNA was available from the parent with confirmed AD and 5 offspring. We identified a coding variant, p.(Arg953Cys), in SORL1 in 5 of 6 individuals affected by AD. Notably, variant carriers had severe AD pathology, and the SORL1 variant segregated with TDP-43 pathology (LATE-NC). We further characterized this variant and show that this Arginine substitution occurs at a critical position in the YWTD-domain of the SORL1 translation product, SORL1. Functional studies further show that the p.R953C variant leads to retention of the SORL1 protein in the endoplasmic reticulum which leads to decreased maturation and shedding of the receptor and prevents its normal endosomal trafficking. Together, our analysis suggests that p.R953C is a pathogenic variant of SORL1 and sheds light on mechanisms of how missense SORL1 variants may lead to AD.

9.
Am J Hum Genet ; 110(7): 1098-1109, 2023 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-37301203

RESUMO

Although the best-known spinocerebellar ataxias (SCAs) are triplet repeat diseases, many SCAs are not caused by repeat expansions. The rarity of individual non-expansion SCAs, however, has made it difficult to discern genotype-phenotype correlations. We therefore screened individuals who had been found to bear variants in a non-expansion SCA-associated gene through genetic testing, and after we eliminated genetic groups that had fewer than 30 subjects, there were 756 subjects bearing single-nucleotide variants or deletions in one of seven genes: CACNA1A (239 subjects), PRKCG (175), AFG3L2 (101), ITPR1 (91), STUB1 (77), SPTBN2 (39), or KCNC3 (34). We compared age at onset, disease features, and progression by gene and variant. There were no features that reliably distinguished one of these SCAs from another, and several genes-CACNA1A, ITPR1, SPTBN2, and KCNC3-were associated with both adult-onset and infantile-onset forms of disease, which also differed in presentation. Nevertheless, progression was overall very slow, and STUB1-associated disease was the fastest. Several variants in CACNA1A showed particularly wide ranges in age at onset: one variant produced anything from infantile developmental delay to ataxia onset at 64 years of age within the same family. For CACNA1A, ITPR1, and SPTBN2, the type of variant and charge change on the protein greatly affected the phenotype, defying pathogenicity prediction algorithms. Even with next-generation sequencing, accurate diagnosis requires dialogue between the clinician and the geneticist.


Assuntos
Ataxia Cerebelar , Ataxias Espinocerebelares , Humanos , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/diagnóstico , Ataxia Cerebelar/genética , Fenótipo , Ataxia/genética , Testes Genéticos , ATPases Associadas a Diversas Atividades Celulares/genética , Proteases Dependentes de ATP/genética , Ubiquitina-Proteína Ligases/genética
10.
Cell Rep ; 42(4): 112310, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-36989114

RESUMO

Protective immune responses against respiratory pathogens, such as severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza virus, are initiated by the mucosal immune system. However, most licensed vaccines are administered parenterally and are largely ineffective at inducing mucosal immunity. The development of safe and effective mucosal vaccines has been hampered by the lack of a suitable mucosal adjuvant. In this study we explore a class of adjuvant that harnesses mucosal-associated invariant T (MAIT) cells. We show evidence that intranasal immunization of MAIT cell agonists co-administered with protein, including the spike receptor binding domain from SARS-CoV-2 virus and hemagglutinin from influenza virus, induce protective humoral immunity and immunoglobulin A production. MAIT cell adjuvant activity is mediated by CD40L-dependent activation of dendritic cells and subsequent priming of T follicular helper cells. In summary, we show that MAIT cells are promising vaccine targets that can be utilized as cellular adjuvants in mucosal vaccines.


Assuntos
COVID-19 , Células T Invariantes Associadas à Mucosa , Humanos , Imunidade Humoral , Anticorpos Antivirais , SARS-CoV-2 , Adjuvantes Imunológicos/farmacologia , Imunidade nas Mucosas , Diferenciação Celular , Células Dendríticas
11.
Elife ; 122023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729029

RESUMO

After fasting, hepatocytes proliferate to help the liver grow back to its original size.


Assuntos
Regeneração Hepática , Fígado , Hepatócitos , Jejum
12.
Mov Disord Clin Pract ; 10(2): 238-247, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36825038

RESUMO

Background: Juvenile-onset Huntington's Disease (JoHD) or Huntington's disease (HD) with age of onset ≤20 years, is a rare clinical entity that often differs phenotypically from adult HD and represents only 1-15% of total HD cases. Objective: To characterize the genetic and clinical characteristics of 32 JoHD patients seen in a Peruvian Neurogenetics clinic from 2000-2018. Methods: This study is a retrospective clinical and genetic review. The clinical database in Lima, Peru was searched for HD patients seen in clinic between 2000 and 2018. Inclusion criteria were: (1) genetically confirmed disease; and (2) HD age of onset ≤20 years, according to the documented medical history. Results: Among 475 patients with genetically confirmed HD in the database, 32 patients (6.7%) had symptom onset at ≤20 years. Among JoHD patients with a known transmitting parent (30 of 32), paternal transmission accounted for 77% of cases. Anticipation was higher with paternal transmission compared to maternal transmission (27.5 ± 11.5 vs. 11.3 ± 7.1 years). Overall expanded CAG repeat length ranged from 44 to 110, with a mean length of 65.6 ± 15.4, and 14 (44%) cases had repeat length under 60. Of the 32 patients included in the study, 25 had detailed clinical symptomatology available, and many patients had unique clinical features such as prominent sleep disturbance (60% of patients), or parkinsonism (73%). Conclusions: This large case series of JoHD patients characterizes the Peruvian JoHD population, reports on unique familial relationships in JoHD, and highlights the varied symptomatic presentation of this rare disease.

13.
BJUI Compass ; 4(2): 187-194, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36816142

RESUMO

Objective: The aim of this study was to investigate whether pre-operative comorbidity status measured by the Charlson comorbidity index (CCI) or cardiopulmonary exercise testing (CPET) is associated with postoperative complications and length of stay (LOS) in patients undergoing robot-assisted radical cystectomy and intracorporeal urinary diversion (RARC-ICUD). Patients and methods: We conducted a retrospective study of a prospectively maintained database of 428 consecutive patients who underwent RARC-ICUD at a tertiary referral centre between 2011 and 2019. CCI was correlated with peri-operative outcomes including postoperative LOS, Clavien-Dindo (CD) complications and survival. A planned subgroup analysis was performed to evaluate the relationship between pre-operative CPET, and the same outcomes utilising the threshold of anaerobic threshold (AT) ≥ 11/ <11 ml/kg/min were analysed. Results: Of the total cohort, 350 patients undergoing RARC-ICUD with complete data were included in the final analysis. A CCI score ≥5 was associated with a higher rate of CD III-V complications at 30-day incidence rate ratio (IRR) = 3.033, (p = 0.02) and at 90-day IRR 2.495, (p = 0.04) postsurgery. LOS was not associated with CCI; the strongest association with LOS was a CD complication of any grading. CCI did not predict readmission or mortality rates after surgery. Subanalyses of patients who underwent pre-operative CPET found that CPET <11 ml/kg/min did not predict for LOS, CD complications or death within 1 year of surgery. Conclusions: CCI score is a simple, reliable and cost-effective way of identifying patients at increased risk of complication after RARC-ICUD. Surgeons performing radical cystectomy should consider utilising CCI to augment pre-operative patient counselling prior to RARC-ICUD.

14.
iScience ; 26(4): 106256, 2023 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-36845030

RESUMO

Emerging SARS-CoV-2 variants pose a threat to human health worldwide. SARS-CoV-2 receptor binding domain (RBD)-based vaccines are suitable candidates for booster vaccines, eliciting a focused antibody response enriched for virus neutralizing activity. Although RBD proteins are manufactured easily, and have excellent stability and safety properties, they are poorly immunogenic compared to the full-length spike protein. We have overcome this limitation by engineering a subunit vaccine composed of an RBD tandem dimer fused to the N-terminal domain (NTD) of the spike protein. We found that inclusion of the NTD (1) improved the magnitude and breadth of the T cell and anti-RBD response, and (2) enhanced T follicular helper cell and memory B cell generation, antibody potency, and cross-reactive neutralization activity against multiple SARS-CoV-2 variants, including B.1.1.529 (Omicron BA.1). In summary, our uniquely engineered RBD-NTD-subunit protein vaccine provides a promising booster vaccination strategy capable of protecting against known SARS-CoV-2 variants of concern.

15.
J Hepatol ; 78(5): 1028-1036, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36702176

RESUMO

BACKGROUND & AIMS: Mouse models of lineage tracing have helped to describe the important subpopulations of hepatocytes responsible for liver regeneration. However, conflicting results have been obtained from different models. Herein, we aimed to reconcile these conflicting reports by repeating a key lineage-tracing study from pericentral hepatocytes and characterising this Axin2CreERT2 model in detail. METHODS: We performed detailed characterisation of the labelled population in the Axin2CreERT2 model. We lineage traced this cell population, quantifying the labelled population over 1 year and performed in-depth phenotypic comparisons, including transcriptomics, metabolomics and analysis of proteins through immunohistochemistry, of Axin2CreERT2 mice to WT counterparts. RESULTS: We found that after careful definition of a baseline population, there are marked differences in labelling between male and female mice. Upon induced lineage tracing there was no expansion of the labelled hepatocyte population in Axin2CreERT2 mice. We found substantial evidence of disrupted homeostasis in Axin2CreERT2 mice. Offspring are born with sub-Mendelian ratios and adult mice have perturbations of hepatic Wnt/ß-catenin signalling and related metabolomic disturbance. CONCLUSIONS: We find no evidence of predominant expansion of the pericentral hepatocyte population during liver homeostatic regeneration. Our data highlight the importance of detailed preclinical model characterisation and the pitfalls which may occur when comparing across sexes and backgrounds of mice and the effects of genetic insertion into native loci. IMPACT AND IMPLICATIONS: Understanding the source of cells which regenerate the liver is crucial to harness their potential to regrow injured livers. Herein, we show that cells which were previously thought to repopulate the liver play only a limited role in physiological regeneration. Our data helps to reconcile differing conclusions drawn from results from a number of prior studies and highlights methodological challenges which are relevant to preclinical models more generally.


Assuntos
Hiperplasia Nodular Focal do Fígado , Regeneração Hepática , Masculino , Feminino , Humanos , Regeneração Hepática/fisiologia , Hepatócitos/metabolismo , Fígado/metabolismo , Homeostase , Proliferação de Células , Proteína Axina/genética
16.
Oral Dis ; 29(2): 595-603, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34338394

RESUMO

OBJECTIVES: To report clinical outcomes of relapsed oropharyngeal squamous cell carcinoma (OPSCC) after definitive intensity-modulated (chemo)radiotherapy [(C)RT]. MATERIALS AND METHODS: Data for all relapsed patients treated for OPSCC with definitive (C)RT between 2010 and 2016 were collected. Primary end-point was post-failure survival (PFS). RESULTS: Overall, 273 OPSCC patients completed definitive (C)RT. Of these, 42 cases (n = 26 human papilloma virus (HPV)-negative; n = 16 HPV-positive) had relapsed (n = 23 persistent disease; n = 19 recurrent disease) and were included in the final analysis. Two-year PFS for the entire population was 30.6%; 20.5% for HPV-negative and 43.8% for HPV-positive patients. Salvage curative surgery was associated with a significantly higher 2 years PFS rate (56.2%) compared with palliative treatment (22.9%) and best supportive care (0%) (p < 0.001). A positive trend in 2 years PFS was recorded in the early complete response cases (49.5%) versus patients who did not achieve a complete response within 3 months of the end of (C)RT (23.0%) (p = 0.11). CONCLUSION: A higher PFS rate is achieved when relapsed OPSCC cases are treated with salvage curative intent. HPV-positive disease and early complete response within 3 months from the end of (C)RT may be related to better PFS.


Assuntos
Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Neoplasias Orofaríngeas , Infecções por Papillomavirus , Humanos , Infecções por Papillomavirus/complicações , Neoplasias Orofaríngeas/tratamento farmacológico , Neoplasias Orofaríngeas/radioterapia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Neoplasias Bucais/complicações , Papillomavirus Humano , Doença Crônica , Neoplasias de Cabeça e Pescoço/complicações , Prognóstico , Estudos Retrospectivos
17.
Nat Chem Biol ; 19(3): 292-300, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36280791

RESUMO

Glutamine synthetase (GS) activity is conserved from prokaryotes to humans, where the ATP-dependent production of glutamine from glutamate and ammonia is essential for neurotransmission and ammonia detoxification. Here, we show that mammalian GS uses glutamate and methylamine to produce a methylated glutamine analog, N5-methylglutamine. Untargeted metabolomics revealed that liver-specific GS deletion and its pharmacological inhibition in mice suppress hepatic and circulating levels of N5-methylglutamine. This alternative activity of GS was confirmed in human recombinant enzyme and cells, where a pathogenic mutation in the active site (R324C) promoted the synthesis of N5-methylglutamine over glutamine. N5-methylglutamine is detected in the circulation, and its levels are sustained by the microbiome, as demonstrated by using germ-free mice. Finally, we show that urine levels of N5-methylglutamine correlate with tumor burden and GS expression in a ß-catenin-driven model of liver cancer, highlighting the translational potential of this uncharacterized metabolite.


Assuntos
Glutamina , Neoplasias , Humanos , Camundongos , Animais , Glutamina/metabolismo , Glutamato-Amônia Ligase/genética , Glutamato-Amônia Ligase/metabolismo , Amônia , Ácido Glutâmico/metabolismo , Fígado/metabolismo , Neoplasias/metabolismo , Homeostase , Mamíferos
18.
Brain ; 146(2): 507-518, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-35949106

RESUMO

Alzheimer's disease is the most common neurodegenerative disease, characterized by dementia and premature death. Early-onset familial Alzheimer's disease is caused in part by pathogenic variants in presenilin 1 (PSEN1) and presenilin 2 (PSEN2), and alternative splicing of these two genes has been implicated in both familial and sporadic Alzheimer's disease. Here, we leveraged targeted isoform-sequencing to characterize thousands of complete PSEN1 and PSEN2 transcripts in the prefrontal cortex of individuals with sporadic Alzheimer's disease, familial Alzheimer's disease (carrying PSEN1 and PSEN2 variants), and controls. Our results reveal alternative splicing patterns of PSEN2 specific to sporadic Alzheimer's disease, including a human-specific cryptic exon present in intron 9 of PSEN2 as well as a 77 bp intron retention product before exon 6 that are both significantly elevated in sporadic Alzheimer's disease samples, alongside a significantly lower percentage of canonical full-length PSEN2 transcripts versus familial Alzheimer's disease samples and controls. Both alternatively spliced products are predicted to generate a prematurely truncated PSEN2 protein and were corroborated in an independent cerebellum RNA-sequencing dataset. In addition, our data in PSEN variant carriers is consistent with the hypothesis that PSEN1 and PSEN2 variants need to produce full-length but variant proteins to contribute to the onset of Alzheimer's disease, although intriguingly there were far fewer full-length transcripts carrying pathogenic alleles versus wild-type alleles in PSEN2 variant carriers. Finally, we identify frequent RNA editing at Alu elements present in an extended 3' untranslated region in PSEN2. Overall, this work expands the understanding of PSEN1 and PSEN2 variants in Alzheimer's disease, shows that transcript differences in PSEN2 may play a role in sporadic Alzheimer's disease, and suggests novel mechanisms of Alzheimer's disease pathogenesis.


Assuntos
Doença de Alzheimer , Doenças Neurodegenerativas , Humanos , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Mutação , Presenilina-2/genética , Presenilina-1/genética
19.
Am J Pathol ; 193(1): 11-26, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36243043

RESUMO

Patients with cholestatic liver disease, including those with primary biliary cholangitis, can experience symptoms of impaired cognition or brain fog. This phenomenon remains unexplained and is currently untreatable. Bile duct ligation (BDL) is an established rodent model of cholestasis. In addition to liver changes, BDL animals develop cognitive symptoms early in the disease process (before development of cirrhosis and/or liver failure). The cellular mechanisms underpinning these cognitive symptoms are poorly understood. Herein, the study explored the neurocognitive symptom manifestations, and tested potential therapies, in BDL mice, and used human neuronal cell cultures to explore translatability to humans. BDL animals exhibited short-term memory loss and showed reduced astrocyte coverage of the blood-brain barrier, destabilized hippocampal network activity, and neuronal senescence. Ursodeoxycholic acid (first-line therapy for most human cholestatic diseases) did not reverse symptomatic or mechanistic aspects. In contrast, obeticholic acid (OCA), a farnesoid X receptor agonist and second-line anti-cholestatic agent, normalized memory function, suppressed blood-brain barrier changes, prevented hippocampal network deficits, and reversed neuronal senescence. Co-culture of human neuronal cells with either BDL or human cholestatic patient serum induced cellular senescence and increased mitochondrial respiration, changes that were limited again by OCA. These findings provide new insights into the mechanism of cognitive symptoms in BDL animals, suggesting that OCA therapy or farnesoid X receptor agonism could be used to limit cholestasis-induced neuronal senescence.


Assuntos
Colestase , Memória de Curto Prazo , Humanos , Camundongos , Animais , Colestase/tratamento farmacológico , Ácido Quenodesoxicólico/farmacologia , Ductos Biliares/cirurgia , Fígado , Ligadura
20.
Proc Natl Acad Sci U S A ; 119(46): e2212954119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343257

RESUMO

Down syndrome (DS) is caused by the triplication of chromosome 21 and is the most common chromosomal disorder in humans. Those individuals with DS who live beyond age 40 y develop a progressive dementia that is similar to Alzheimer's disease (AD). Both DS and AD brains exhibit numerous extracellular amyloid plaques composed of Aß and intracellular neurofibrillary tangles composed of tau. Since AD is a double-prion disorder, we asked if both Aß and tau prions feature in DS. Frozen brains from people with DS, familial AD (fAD), sporadic AD (sAD), and age-matched controls were procured from brain biorepositories. We selectively precipitated Aß and tau prions from DS brain homogenates and measured the number of prions using cellular bioassays. In brain extracts from 28 deceased donors with DS, ranging in age from 19 to 65 y, we found nearly all DS brains had readily measurable levels of Aß and tau prions. In a cross-sectional analysis of DS donor age at death, we found that the levels of Aß and tau prions increased with age. In contrast to DS brains, the levels of Aß and tau prions in the brains of 37 fAD and sAD donors decreased as a function of age at death. Whether DS is an ideal model for assessing the efficacy of putative AD therapeutics remains to be determined.


Assuntos
Doença de Alzheimer , Síndrome de Down , Príons , Adulto , Humanos , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Estudos Transversais , Síndrome de Down/patologia , Príons/metabolismo , Proteínas tau/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...